Math 259A Lecture 5 Notes

Daniel Raban

October 7, 2019

1 The GNS Construction

1.1 The idea: turning abstract C^* -algebras in to concrete ones

Let M be a C^* -algebra (with 1_M) and $x = x^* \in M_h$. Then the C^* -algebra generated by x can be identified with Spec(x). Then denote

$$x_+ = f_+(x), \qquad x_- = f_-(x),$$

where

$$f_+(x) = \max\{x, 0\}, \qquad f_-(x) = -\min\{x, 0\}.$$

Then $x = x_+ - x_-$, $x_+x_- = 0$, and we can also define $|x| = x_+ + x_- = (x^2)^{1/2}$. If $\operatorname{Spec}(x) \subseteq [0, \infty)$, then we can define \sqrt{x} using functional calculus.

Lemma 1.1. If $x = x^* \in M$ and $||1 - x|| \leq 1$, then $\operatorname{Spec}(x) \subseteq [0, \infty)$. Conversely, if $\operatorname{Spec}(x) \subseteq [0, \infty)$, then $||1 - x|| \leq 1$.

Proof. This follows from functional calculus.

Lemma 1.2. Let S, T be elements of a Banach algebra. Then $\operatorname{Spec}(ST) \cup \{0\} = \operatorname{Spec}(TS) \cup \{0\}$.

Proof. If $\lambda \neq 0$ and $TS - \lambda 1$ has inverse u, then $TSu = \lambda u + 1$, so

$$(ST - \lambda 1)(SuT - 1) = STSuT - ST - \lambda - \lambda SuT + \lambda 1 = \lambda 1.$$

Recall: We want to show that if M is a C^* -algebra, there is an isometric embedding $\pi: M \to B(H)$, where H is a Hilbert space; that is, every abstract C^* -algebra is a concrete C^* -algebra. To get the isometry property, we only need $||\pi(x)||^2 = ||x||^2$, which means we need $||\pi(x^*x)|| = ||x^*x||$. This is the spectral radius of x^*x and $\pi(x^*x)$, so we need only show that π is injective.

Suppose we have that if $x \neq 0$ then there is a $\pi_x : M \to B(H_x)$ with $\pi_x(x) \neq 0$. Then we can take $\bigoplus_x \pi_x : M \to \bigoplus B(H_x)$. So we only need to find π_x for each x. To find π_x , we claim that all we need is a functional φ which has $\varphi(y^*y) \ge 0$ for $y \in M$ and $\varphi(x^*x) \ne 0$. Then we will be able to get a Hilbert space by looking at M itself with the inner product $\langle y, x \rangle_{\varphi} = \varphi(y^*x)$ (this is a Hilbert space if we mod out by some equivalence relation). To find a functional φ , we will need to use Hahn-Banach.

1.2 Characterizing positive elements in a C^{*}-algebra

Proposition 1.1 (Positive elements in C^* -algebras). Let M be a C^* -algebra, and let $x = x^* \in M_h$. The following are equivalent:

- 1. Spec $(x) \subseteq [0, \infty)$.
- 2. $x = y^*y$ for some $y \in M$.
- 3. $x = h^2$ for some $h \in M_h$.

Also, if we denote M_+ to be the set of elements satisfying these conditions, then M_+ is a closed, convex cone in M_h ($x \in M_+, \lambda \ge 0 \implies \lambda x \in M_+$ and $x, y \in M_+ \implies x + y \in M_+$). Moreover, $M_+ \cap (-M_+) = \{0\}$.

Proof. Let P be the set of elements in M_h satisfying condition 1.

(1) \implies (3): Take $h = \sqrt{x}$ by functional calculus.

(3) \implies (2): Take $y = y^* = h$.

(3) \implies (1): Since h is self-adjoint, Spec(h) $\subseteq \mathbb{R}$. Then we have Spec(h²) = $(\operatorname{Spec}(h))^2 \subseteq [0, \infty)$.

(2) \implies (3): Write $y^*y = (y^*y)_+ - (y^*y)_- := u^2 - v^2$. Then

$$(yv)^*(yv) = v(y^*y)v = v(u^2 - v^2)v = -v^4$$

has spectrum $\subseteq (-\infty, 0]$. Let yv = s + it with $s, t \in M_h$. Then

$$(yv)(yv)^* = \underbrace{(s-it)(s+it)}_{s^2+t^2} + \underbrace{(s+it)(s-it)}_{s^2+t^2},$$

so if P is a convex cone, then this is in P. Then also $(yv)^*(yv) \in P$ (because $\text{Spec}(TS) \cup \{0\} = \text{Spec}(ST) \cup \{0\}$). So we get that $\text{Spec}((yv)^*(yv)) = 0$, which means that yv = 0. So v = 0.

To show that P is a cone, we use that for $x \in M_h$, $x \in P \iff |||x||(1-x)|| \le 1$ (from the lemma before). This implies that P is closed. On the other hand, if $x \in P$ and $\lambda > 0$, then $\lambda x \in P$ by functional calculus. And if $x, y \in P$ (and now we can assume $||x||, ||y|| \le 1$), then

$$\left\|1 - \frac{x+y}{2}\right\| \le \frac{1}{2} \underbrace{\|1-x\|}_{\le 1} + \frac{1}{2} \underbrace{\|1-y\|}_{\le 1} \le 1,$$

so $\frac{x+y}{2} \in P$. It follows that P is a closed, convex cone. This completes the proof.

So from now on, if M is a C^* -algebra, then we denote M_+ to be the cone of positive elements.

1.3 Positive linear functionals

Definition 1.1. A functional $\varphi : M \to \mathbb{C}$ on an involutive algebra is **positive** if $\varphi(x^*x) \ge 0$ for all $x \in M$ and $\varphi(M_+) \subseteq [0, \infty)$.

Definition 1.2. A state¹ on an involutive Banach algebra is a positive continuous functional with $\|\varphi\| = 1$.

Proposition 1.2. If M is an involutive algebra and φ is a positive functional, then M has a pre-Hilbert space structure H_{φ} with the pre-inner product $\langle x, y \rangle_{\varphi} = \varphi(y^*x)$.

Corollary 1.1. Let $I_{\varphi} := \{x \in M : \varphi(x^*x) = 0\}$. M/I_{φ} is an inner product space with $\langle \cdot, \cdot \rangle_{\varphi}$. The completion is a Hilbert space.

Proof. We just need I_{φ} to be a vector space. We have the Cauchy-Schwarz inequality: we have for all $\lambda \in \mathbb{C}$, $\langle x + \lambda y, x + \lambda y \rangle \geq 0$, so the discriminant is ≤ 0 ; this translates into the desired inequality. Now I_{φ} is a vector space because we have $\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} \langle x + i^{k}y, x + i^{k}y \rangle_{\varphi}$.

Proposition 1.3. I_{φ} is a left *M*-ideal. That is, if $y \in I_{\varphi}$, then $xy \in I_{\varphi}$ for any $x \in M$.

Lemma 1.3. If M is a Banach algebra and $x \in (M)_1$, with x = 1 + x', then the series

$$h = 1 + \frac{1}{1!} \cdot \frac{1}{2}x' + \frac{1}{2!} \cdot \frac{1}{2}\left(\frac{1}{2} - 1\right)(x')^2 + \dots + \frac{1}{n!}\left(\frac{1}{2} - 1\right)\cdots\left(\frac{1}{2} - (n-1)\right)(x')^n + \dots$$

is absolutely convergent with $h^2 = x = 1 + x'$. Moreover, if x is self-adjoint, then so is h.

Proposition 1.4. If M is an involutive Banach algebra and φ is positive on M, then φ is continuous and $\|\varphi\| = \varphi(1)$.

Proof. By Cauchy-Schwarz, $|\varphi(1x)|^2 \leq \varphi(1)\varphi(x^*x)$. If $y = y^*$ and $||y|| \leq 1$, then, by the lemma, we have $1 - y = h^2$ with $h = h^*$. Given this representation, $\varphi(x^*x) \leq \varphi(1)$, so $|\varphi(x)| \leq \varphi(1)$.

Corollary 1.2. If M is an involutive Banach algebra with 1_M , then the space of states S(M) is convex and weakly compact in $(M^*)_1$.

Proposition 1.5. Let M be an involutive Banach algebra, and let φ be positive. Then for all $x, y \in M$,

$$|\varphi(y^*xy)| \le ||x||\varphi(y^*y).$$

Proof. The functional $\varphi_y(x) := \varphi(y^*xy)$ is positive. So $|\varphi_x(x)| \le \varphi_y(1) ||x||$. We then have $|\varphi(y^*xy)| \le \varphi(y^*y) ||x||$.

¹This terminology comes from physics.

1.4 The GNS construction

Corollary 1.3 (GNS² construction). Let M be an involutive Banach algebra, and let φ be positive. Then $\pi_{\varphi} : M \to \mathcal{B}(M/I)$ given by $\pi_{\varphi}(x)(\hat{y}) = \widehat{xy}$ is an isometric *-isomorphism of algebras.

Proof. We have

$$\|\pi_{\varphi}(x)(\hat{y})\|^{2} = \varphi(y^{*}x^{*}xy) \le \|x^{*}x\|\varphi(y^{*}y) \le \|x\|^{2}\|\hat{y}\|_{M/I_{\varphi}}$$

So $||\pi_{\varphi}(x)|| \leq ||x||$, so $\pi_{\varphi}(x)$ is continuous and extends to all of M/I_{φ} . We also have

$$\pi_{\varphi}(x_1 x_2) = \pi_{\varphi}(x_1) \pi_{\varphi}(x_2),$$

$$\pi_{\varphi}(x^*) = \pi_{\varphi}(x)^*.$$

Such a map π_{φ} is called a **representation**.

Proposition 1.6. If M is a C^{*}-algebra, then φ is positive if and only if $\|\varphi\| = \varphi(1)$.

Proof. (\implies): We have already shown this.

 (\Leftarrow) : If $\varphi(1) = \|\varphi\| = 1$ and $x \ge 0$ in M, suppose $\varphi(x) \ge 0$. Then there exists a disc $D \subseteq \mathbb{C}$ centered at some $z_0 \in \mathbb{C}$ such that $\operatorname{Spec}(x) \subseteq D$ but $\varphi(x) \notin D$. Thus, $\operatorname{Spec}(x - z_0 1) \subseteq B_R(0)$, and $x - z_0 1$ is normal. So $\|x - z_0 1\| \le R$, and

$$|\varphi(x) - z_0| = |\varphi(x - z_0)| \le \|\varphi\| \|x - z_0\| \le \|x - z_0\| \le R.$$

This is a contradiction.

It remains to show that we can find enough positive linear functionals. We will finish this next time.

²This is Gelfand, Naimark, and Segal. Gelfand and Naimark only proved it for the commutative case.