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1 The GNS Construction

1.1 The idea: turning abstract C∗-algebras in to concrete ones

Let M be a C∗-algebra (with 1M ) and x = x∗ ∈Mh. Then the C∗-algebra generated by x
can be identified with Spec(x). Then denote

x+ = f+(x), x− = f−(x),

where
f+(x) = max{x, 0}, f−(x) = −min{x, 0}.

Then x = x+ − x−, x+x− = 0, and we can also define |x| = x+ + x− = (x2)1/2. If
Spec(x) ⊆ [0,∞), then we can define

√
x using functional calculus.

Lemma 1.1. If x = x∗ ∈ M and ‖1 − x‖ ≤ 1, then Spec(x) ⊆ [0,∞). Conversely, if
Spec(x) ⊆ [0,∞), then ‖1− x‖ ≤ 1.

Proof. This follows from functional calculus.

Lemma 1.2. Let S, T be elements of a Banach algebra. Then Spec(ST )∪{0} = Spec(TS)∪
{0}.

Proof. If λ 6= 0 and TS − λ1 has inverse u, then TSu = λu+ 1, so

(ST − λ1)(SuT − 1) = STSuT − ST − λ− λSuT + λ1 = λ1.

Recall: We want to show that if M is a C∗-algebra, there is an isometric embedding
π : M → B(H), where H is a Hilbert space; that is, every abstract C∗-algebra is a concrete
C∗-algebra. To get the isometry property, we only need ‖π(x)‖2 = ‖x‖2, which means we
need ‖π(x∗x)‖ = ‖x∗x‖. This is the spectral radius of x∗x and π(x∗x), so we need only
show that π is injective.

Suppose we have that if x 6= 0 then there is a πx : M → B(Hx) with πx(x) 6= 0. Then
we can take

⊕
x πx : M →

⊕
B(Hx). So we only need to find πx for each x. To find πx, we
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claim that all we need is a functional ϕ which has ϕ(y∗y) ≥ 0 for y ∈ M and ϕ(x∗x) 6= 0.
Then we will be able to get a Hilbert space by looking at M itself with the inner product
〈y, x〉ϕ = ϕ(y∗x) (this is a Hilbert space if we mod out by some equivalence relation). To
find a functional ϕ, we will need to use Hahn-Banach.

1.2 Characterizing positive elements in a C∗-algebra

Proposition 1.1 (Positive elements in C∗-algebras). Let M be a C∗-algebra, and let x =
x∗ ∈Mh. The following are equivalent:

1. Spec(x) ⊆ [0,∞).

2. x = y∗y for some y ∈M .

3. x = h2 for some h ∈Mh.

Also, if we denote M+ to be the set of elements satisfying these conditions, then M+ is a
closed, convex cone in Mh (x ∈ M+, λ ≥ 0 =⇒ λx ∈ M+ and x, y ∈ M+ =⇒ x + y ∈
M+). Moreover, M+ ∩ (−M+) = {0}.

Proof. Let P be the set of elements in Mh satisfying condition 1.
(1) =⇒ (3): Take h =

√
x by functional calculus.

(3) =⇒ (2): Take y = y∗ = h.
(3) =⇒ (1): Since h is self-adjoint, Spec(h) ⊆ R. Then we have Spec(h2) =

(Spec(h))2 ⊆ [0,∞).
(2) =⇒ (3): Write y∗y = (y∗y)+ − (y∗y)− := u2 − v2. Then

(yv)∗(yv) = v(y∗y)v = v(u2 − v2)v = −v4

has spectrum ⊆ (−∞, 0]. Let yv = s+ it with s, t ∈Mh. Then

(yv)(yv)∗ = (s− it)(s+ it)︸ ︷︷ ︸
s2+t2

+ (s+ it)(s− it)︸ ︷︷ ︸
s2+t2

,

so if P is a convex cone, then this is in P . Then also (yv)∗(yv) ∈ P (because Spec(TS) ∪
{0} = Spec(ST )∪ {0}). So we get that Spec((yv)∗(yv)) = 0, which means that yv = 0. So
v = 0.

To show that P is a cone, we use that for x ∈ Mh, x ∈ P ⇐⇒ ‖‖x‖(1 − x)‖ ≤ 1
(from the lemma before). This implies that P is closed. On the other hand, if x ∈ P and
λ > 0, then λx ∈ P by functional calculus. And if x, y ∈ P (and now we can assume
‖x‖, ‖y‖ ≤ 1), then ∥∥∥∥1− x+ y

2

∥∥∥∥ ≤ 1

2
‖1− x‖︸ ︷︷ ︸
≤1

+
1

2
‖1− y‖︸ ︷︷ ︸
≤1

≤ 1,

so x+y
2 ∈ P . It follows that P is a closed, convex cone. This completes the proof.
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So from now on, if M is a C∗-algebra, then we denote M+ to be the cone of positive
elements.

1.3 Positive linear functionals

Definition 1.1. A functional ϕ : M → C on an involutive algebra is positive if ϕ(x∗x) ≥ 0
for all x ∈M and ϕ(M+) ⊆ [0,∞).

Definition 1.2. A state1 on an involutive Banach algebra is a positive continuous func-
tional with ‖ϕ‖ = 1.

Proposition 1.2. If M is an involutive algebra and ϕ is a positive functional, then M has
a pre-Hilbert space structure Hϕ with the pre-inner product 〈x, y〉ϕ = ϕ(y∗x).

Corollary 1.1. Let Iϕ := {x ∈ M : ϕ(x∗x) = 0}. M/Iϕ is an inner product space with
〈·, ·〉ϕ. The completion is a Hilbert space.

Proof. We just need Iϕ to be a vector space. We have the Cauchy-Schwarz inequality:
we have for all λ ∈ C, 〈x+ λy, x+ λy〉 ≥ 0, so the discriminant is ≤ 0; this trans-
lates into the desired inequality. Now Iϕ is a vector space because we have 〈x, y〉 =
1
4

∑3
k=0 i

k
〈
x+ iky, x+ iky

〉
ϕ
.

Proposition 1.3. Iϕ is a left M -ideal. That is, if y ∈ Iϕ, then xy ∈ Iϕ for any x ∈M .

Lemma 1.3. If M is a Banach algebra and x ∈ (M)1, with x = 1 + x′, then the series

h = 1 +
1

1!
· 1

2
x′ +

1

2!
· 1

2

(
1

2
− 1

)
(x′)2 + · · ·+ 1

n!

(
1

2
− 1

)
· · ·
(

1

2
− (n− 1)

)
(x′)n + · · ·

is absolutely convergent with h2 = x = 1 + x′. Moreover, if x is self-adjoint, then so is h.

Proposition 1.4. If M is an involutive Banach algebra and ϕ is positive on M , then ϕ
is continuous and ‖ϕ‖ = ϕ(1).

Proof. By Cauchy-Schwarz, |ϕ(1x)|2 ≤ ϕ(1)ϕ(x∗x). If y = y∗ and ‖y‖ ≤ 1, then, by the
lemma, we have 1 − y = h2 with h = h∗. Given this representation, ϕ(x∗x) ≤ ϕ(1), so
|ϕ(x)| ≤ ϕ(1).

Corollary 1.2. If M is an involutive Banach algebra with 1M , then the space of states
S(M) is convex and weakly compact in (M∗)1.

Proposition 1.5. Let M be an involutive Banach algebra, and let ϕ be positive. Then for
all x, y ∈M ,

|ϕ(y∗xy)| ≤ ‖x‖ϕ(y∗y).

Proof. The functional ϕy(x) := ϕ(y∗xy) is positive. So |ϕx(x)| ≤ ϕy(1)‖x‖. We then have
|ϕ(y∗xy)| ≤ ϕ(y∗y)‖x‖.

1This terminology comes from physics.

3



1.4 The GNS construction

Corollary 1.3 (GNS2 construction). Let M be an involutive Banach algebra, and let ϕ be
positive. Then πϕ : M → B(M/I) given by πϕ(x)(ŷ) = x̂y is an isometric *-isomorphism
of algebras.

Proof. We have

‖πϕ(x)(ŷ)‖2 = ϕ(y∗x∗xy) ≤ ‖x∗x‖ϕ(y∗y) ≤ ‖x‖2‖ŷ‖M/Iϕ .

So ‖πϕ(x)‖ ≤ ‖x‖, so πϕ(x) is continuous and extends to all of M/Iϕ. We also have

πϕ(x1x2) = πϕ(x1)πϕ(x2),

πϕ(x∗) = πϕ(x)∗.

Such a map πϕ is called a representation.

Proposition 1.6. If M is a C∗-algebra, then ϕ is positive if and only if ‖ϕ‖ = ϕ(1).

Proof. ( =⇒ ): We have already shown this.
( ⇐= ): If ϕ(1) = ‖ϕ‖ = 1 and x ≥ 0 in M , suppose ϕ(x) 6≥ 0. Then there exists

a disc D ⊆ C centered at some z0 ∈ C such that Spec(x) ⊆ D but ϕ(x) /∈ D. Thus,
Spec(x− z01) ⊆ BR(0), and x− z01 is normal. So ‖x− z01‖ ≤ R, and

|ϕ(x)− z0| = |ϕ(x− z0)| ≤ ‖ϕ‖‖x− z0‖ ≤ ‖x− z0‖ ≤ R.

This is a contradiction.

It remains to show that we can find enough positive linear functionals. We will finish
this next time.

2This is Gelfand, Naimark, and Segal. Gelfand and Naimark only proved it for the commutative case.

4


	The GNS Construction
	The idea: turning abstract C*-algebras in to concrete ones
	Characterizing positive elements in a C*-algebra
	Positive linear functionals
	The GNS construction


